ACCURACY
Take two dataframes with the true and predicted labels from a classification task, and indicates whether the prediction was correct or not.These dataframes should both be single columns.Params:true_label : optional strtrue label users can select from original datapredicted_label : optional strresulting predicted label users can selectReturns:out : DataFrameThe input predictions dataframe, with an extra boolean column "prediction_correct".
Python Code
from typing import Optional
from flojoy import DataFrame, flojoy
@flojoy
def ACCURACY(
true_data: DataFrame,
predicted_data: DataFrame,
true_label: Optional[str] = None,
predicted_label: Optional[str] = None,
) -> DataFrame:
"""Take two dataframes with the true and predicted labels from a classification task, and indicates whether the prediction was correct or not.
These dataframes should both be single columns.
Parameters
----------
true_label : optional str
true label users can select from original data
predicted_label : optional str
resulting predicted label users can select
Returns
-------
DataFrame
The input predictions dataframe, with an extra boolean column "prediction_correct".
"""
true_df = true_data.m
predicted_df = predicted_data.m
# if users prov
if true_label:
true_label = true_df[true_label]
else:
true_label = true_df.iloc[:, 0]
if predicted_label:
predicted_label = predicted_df[predicted_label]
else:
predicted_label = predicted_df.iloc[:, 0]
predicted_df["prediction_correct"] = true_label == predicted_label
return DataFrame(df=predicted_df)
Example
Having problems with this example app? Join our Discord community and we will help you out!
In this example, the iris dataset is split into two parts, one for training and the other for testing. The labels from the test data are stripped using an EXTRACT_COLUMNS
node, taking only the features of the data.
The true labels are also extracted with another EXTRACT_COLUMNS
to be passed to the the ACCURACY
node, along with the SUPPORT_VECTOR_MACHINE
predictions.
In the output, we see that the SUPPORT_VECTOR_MACHINE
has made correct predictions for all of the test data.