Skip to content

IMAGE_SMOOTHING

Apply an image smoothing operation on an input image.Note: For "gaussian" and "median" type, you are only allowed an odd number for the kernel value. See https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html for smoothing function information. Inputs ------ default : Image The input image to apply smoothing to.Params:kernel : intThe strength of the smoothing (larger = stronger smoothing).smoothing_type : selectThe type of smoothing function to use.Returns:out : ImageThe smoothed image.
Python Code
from typing import Literal

import cv2
import numpy as np
from flojoy import Image, flojoy


@flojoy(deps={"opencv-python": "4.8.0.76"})
def IMAGE_SMOOTHING(
    default: Image,
    kernel: int = 5,
    smoothing_type: Literal["average", "gaussian", "median", "bilateral"] = "average",
) -> Image:
    """Apply an image smoothing operation on an input image.

    Note: For "gaussian" and "median" type, you are only allowed an odd number for the kernel value.

    See https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html for smoothing function information.

    Inputs
    ------
    default : Image
        The input image to apply smoothing to.

    Parameters
    ----------
    kernel : int
        The strength of the smoothing (larger = stronger smoothing).
    smoothing_type : select
        The type of smoothing function to use.

    Returns
    -------
    Image
        The smoothed image.
    """

    r = default.r
    g = default.g
    b = default.b
    a = default.a

    if a is not None:
        rgba_image = np.stack((r, g, b, a), axis=2)
    else:
        rgba_image = np.stack((r, g, b), axis=2)

    try:
        match smoothing_type:
            case "average":
                image = cv2.blur(rgba_image, (kernel, kernel))
            case "gaussian":
                assert kernel & 1, "Kernel must be odd for 'gaussian' smoothing."
                image = cv2.GaussianBlur(rgba_image, (kernel, kernel), 0)
            case "median":
                assert kernel & 1, "Kernel must be odd for 'median' smoothing."
                image = cv2.medianBlur(rgba_image, kernel)
            case "bilateral":
                rgba_image = cv2.cvtColor(rgba_image, cv2.COLOR_BGRA2BGR)
                image = cv2.bilateralFilter(rgba_image, kernel, kernel * 5, kernel * 5)
        try:
            r, g, b, a = cv2.split(image)
        except Exception:
            r, g, b = cv2.split(image)
        if a is None:
            a = None
        return Image(
            r=r,
            g=g,
            b=b,
            a=a,
        )
    except Exception as e:
        raise e

Find this Flojoy Block on GitHub

Example

Having problems with this example app? Join our Discord community and we will help you out!
React Flow mini map

In this example, it takes an image from the local file and process image smoothing.

The result is available through the IMAGE node.