Skip to content

HEATMAP

Create a Plotly Heatmap visualization for a given input DataContainer.Inputs ------ default : OrderedPair|OrderedTriple|DataFrame|Vector|Matrix|Grayscale the DataContainer to be visualizedParams:show_text : boolwhether or not to show the text inside the heatmap color blockshistogram : boolwhether or not to render a histogram of the image next to the renderReturns:out : Plotlythe DataContainer containing the Plotly heatmap visualization
Python Code
from flojoy import (
    Plotly,
    OrderedPair,
    flojoy,
    Matrix,
    Grayscale,
    DataFrame,
    Vector,
    OrderedTriple,
)
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots

import numpy as np
from blocks.DATA.VISUALIZATION.template import plot_layout


@flojoy
def HEATMAP(
    default: OrderedPair | Matrix | Grayscale | DataFrame | Vector | OrderedTriple,
    show_text: bool = False,
    histogram: bool = False,
) -> Plotly:
    """Create a Plotly Heatmap visualization for a given input DataContainer.

    Inputs
    ------
    default : OrderedPair|OrderedTriple|DataFrame|Vector|Matrix|Grayscale
        the DataContainer to be visualized

    Parameters
    ----------
    show_text : bool
        whether or not to show the text inside the heatmap color blocks
    histogram : bool
        whether or not to render a histogram of the image next to the render

    Returns
    -------
    Plotly
        the DataContainer containing the Plotly heatmap visualization

    """
    layout = plot_layout(title="HEATMAP")
    if histogram:
        layout.sliders = [
            {
                "steps": [
                    {
                        "label": str(v),
                        "method": "restyle",
                        "args": [{"zmin": 0, "zmax": v}],
                    }
                    for v in range(1, 255, 1)
                ],
                "name": "zmax",
            },
        ]
    text_template = "%{text}"

    fig = (
        go.Figure()
        if not histogram
        else make_subplots(
            rows=1,
            cols=2,
            column_widths=[0.9, 0.1],
            specs=[[{}, {}]],
            horizontal_spacing=0.05,
        )
    )
    match default:
        case Vector():
            z = default.v
            if z.ndim < 2:
                num_columns = len(z) // 2
                z = np.reshape(z, (2, num_columns))
            fig.add_trace(
                go.Heatmap(
                    z=z,
                    text=z if show_text else None,
                    texttemplate=text_template,
                ),
                row=None if not histogram else 1,
                col=None if not histogram else 1,
            )
            if histogram:
                histogram = np.histogram(z, bins="auto")
                x_values = histogram[1][:-1] + 0.05  # Center bars on bin edges
                histogram_trace = go.Bar(
                    x=x_values, y=histogram[0], orientation="h", showlegend=False
                )
                fig.add_trace(histogram_trace, row=1, col=2)
        case OrderedPair():
            z = default.y
            if default.y.ndim < 2:
                num_columns = len(default.y) // 2
                z = np.reshape(default.y, (2, num_columns))
            fig.add_trace(
                go.Heatmap(
                    z=z,
                    x=default.x,
                    y=default.y,
                    text=z if show_text else None,
                    texttemplate=text_template,
                ),
                row=None if not histogram else 1,
                col=None if not histogram else 1,
            )
            if histogram:
                histogram = np.histogram(z, bins="auto")
                x_values = histogram[1][:-1] + 0.05  # Center bars on bin edges
                histogram_trace = go.Bar(
                    x=x_values, y=histogram[0], orientation="h", showlegend=False
                )
                fig.add_trace(histogram_trace, row=1, col=2)
        case OrderedTriple():
            x = np.unique(default.x)
            y = np.unique(default.y)
            z_size = len(x) * len(y)
            if z_size > len(default.z):
                z = np.pad(
                    default.z, (0, z_size - len(default.z)), mode="constant"
                ).reshape(len(y), len(x))
            else:
                z = default.z[:z_size].reshape(len(y), len(x))
            if z.ndim < 2:
                num_columns = len(z) // 2
                z = np.reshape(z, (2, num_columns))
            fig.add_trace(
                go.Heatmap(
                    z=z,
                    x=x,
                    y=y,
                    text=z if show_text else None,
                    texttemplate=text_template,
                ),
                row=None if not histogram else 1,
                col=None if not histogram else 1,
            )
            if histogram:
                histogram = np.histogram(z, bins="auto")
                x_values = histogram[1][:-1] + 0.05  # Center bars on bin edges
                histogram_trace = go.Bar(
                    x=x_values, y=histogram[0], orientation="h", showlegend=False
                )
                fig.add_trace(histogram_trace, row=1, col=2)
        case Matrix():
            m = default.m
            if m.ndim < 2:
                num_columns = len(m) // 2
                m = np.reshape(m, (2, num_columns))
            fig.add_trace(
                go.Heatmap(
                    z=m,
                    text=m if show_text else None,
                    texttemplate=text_template,
                ),
                row=None if not histogram else 1,
                col=None if not histogram else 1,
            )
            if histogram:
                histogram = np.histogram(m, bins="auto")
                x_values = histogram[1][:-1] + 0.05  # Center bars on bin edges
                histogram_trace = go.Bar(
                    x=x_values, y=histogram[0], orientation="h", showlegend=False
                )
                fig.add_trace(histogram_trace, row=1, col=2)
        case Grayscale():
            m = default.m

            fig.add_trace(
                go.Heatmap(
                    z=m,
                    text=m if show_text else None,
                    texttemplate=text_template,
                ),
                row=None if not histogram else 1,
                col=None if not histogram else 1,
            )
            if histogram:
                histogram = np.histogram(m, bins="auto")
                x_values = histogram[1][:-1] + 0.05  # Center bars on bin edges
                histogram_trace = go.Bar(
                    y=x_values, x=histogram[0], orientation="h", showlegend=False
                )
                fig.add_trace(histogram_trace, row=1, col=2)
        case DataFrame():
            df = default.m
            fig = px.imshow(df, text_auto=show_text)

    if histogram:
        layout.xaxis2 = dict(
            tickmode="array",
            tickvals=[0, histogram[0].max()],
            ticktext=["0", f"{histogram[0].max():.0f}"],
        )
        layout.yaxis2 = dict(
            tickmode="array",
            tickvals=[x_values.min(), x_values.max()],
            ticktext=["", ""],
        )
    fig.update_layout(layout)
    return Plotly(
        fig=fig,
    )

Find this Flojoy Block on GitHub

Example

Having problems with this example app? Join our Discord community and we will help you out!
React Flow mini map

In this example we used -

  • LINSPACE to simulate Vector type of data
  • SINE to simulate OrderedPair type of data
  • PLOTLY_DATASET to simulate DataFrame type of data, and
  • DF_2_ORDERED_TRIPLE to simulate OrderedTriple type of data

finally we visualized each of data types with Plotly HEATMAP visualizer node.