Skip to content

PID

Model a PID (proportional-integral-derivative) system.The returned value will be modified according to the PID parameters Kp, Ki, and Kd. Inputs ------ single_input : Scalar The data to apply the PID function to.Params:Kp : floatThe proprotional PID parameter.Ki : floatThe integral PID parameter.Kd : floatThe derivative PID parameter.Returns:out : Scalarc: The PID function output.
Python Code
from numpy import zeros, append, ndarray
from flojoy import flojoy, Scalar, DefaultParams, SmallMemory

memory_key = "pid-info"


@flojoy(inject_node_metadata=True)
def PID(
    single_input: Scalar,
    default_params: DefaultParams,
    Kp: float = 5,
    Ki: float = 0.0143,
    Kd: float = 356.25,
) -> Scalar:
    """Model a PID (proportional-integral-derivative) system.

    The returned value will be modified according to the PID parameters Kp, Ki, and Kd.

    Inputs
    ------
    single_input : Scalar
        The data to apply the PID function to.

    Parameters
    ----------
    Kp : float
        The proprotional PID parameter.
    Ki : float
        The integral PID parameter.
    Kd : float
        The derivative PID parameter.

    Returns
    -------
    Scalar
        c: The PID function output.
    """

    # First let's get the parameters that won't change
    node_id = default_params.node_id
    # Now we need some memory! We need to keep track of the running
    # integral value of the inputs (regulation errors), as well as
    # the previous 3 values of the regulation error
    data = SmallMemory().read_memory(node_id, memory_key)
    if data is None:
        initialize = True
    elif type(data) == ndarray:
        initialize = False
    else:
        raise TypeError("Issue reading memory from REDIS.")
    integral: int = 0 if initialize else data[0]
    regulation_error_primes = zeros(3) if initialize else data[1:]
    regulation_error = single_input.c

    integral: float = integral + 0.5 * Ki * (
        regulation_error + regulation_error_primes[0]
    )
    output_signal = -1 * (
        Kp * regulation_error
        + integral
        + 0.1667
        * Kd
        * (
            regulation_error
            - regulation_error_primes[2]
            + 3.0 * (regulation_error_primes[0] - regulation_error_primes[1])
        )
    )
    regulation_error_primes[2] = regulation_error_primes[1]
    regulation_error_primes[1] = regulation_error_primes[0]
    regulation_error_primes[0] = regulation_error

    # Now write to memory ...
    SmallMemory().write_to_memory(
        node_id, memory_key, append(integral, regulation_error_primes)
    )

    # ... and return the result
    return Scalar(c=output_signal)

Find this Flojoy Block on GitHub

Example

Having problems with this example app? Join our Discord community and we will help you out!
React Flow mini map

This example demonstrates an active PID controller for a mock non-linear system to be driven to a given setpoint.