TWO_DIMENSIONAL_FFT
Performs a two-dimensional fast fourier transform on the input matrix.With the FFT algorithm, the input matrix will undergo a change of basis from the space domain into the frequency domain.
grayscale, dataframe, image, or matrix
Inputs
------
default : Grayscale|DataFrame|Image|Matrix
The 2D data to apply 2DFFT to.Params:real_signal : booltrue if the input matrix consists of only real numbers, false otherwisecolor : selectif the input is an RGBA or RGB image, this parameter selects the color channel to perform the FFT onReturns:out : Matrix if input is Matrixm: the matrix after 2DFFTout : DataFrame if input is Dataframem: the dataframe after 2DFFTout : Imagethe frequency spectrum of the color channel
Python Code
from scipy import fft
from flojoy import flojoy, DataFrame, Matrix, Image, Grayscale
from typing import Literal
from PIL import Image as PillowImage
import pandas as pd
import numpy as np
def extrapolate(x):
return (x - x.min()) / (x.max() - x.min())
@flojoy
def TWO_DIMENSIONAL_FFT(
default: Grayscale | DataFrame | Image | Matrix,
real_signal: bool = True,
color: Literal["red", "green", "blue", "grayscale"] = "red",
) -> Matrix | DataFrame | Image:
"""Performs a two-dimensional fast fourier transform on the input matrix.
With the FFT algorithm, the input matrix will undergo a change of basis from the space domain into the frequency domain.
grayscale, dataframe, image, or matrix
Inputs
------
default : Grayscale|DataFrame|Image|Matrix
The 2D data to apply 2DFFT to.
Parameters
----------
real_signal : bool
true if the input matrix consists of only real numbers, false otherwise
color : select
if the input is an RGBA or RGB image, this parameter selects the color channel to perform the FFT on
Returns
-------
Matrix if input is Matrix
m: the matrix after 2DFFT
DataFrame if input is Dataframe
m: the dataframe after 2DFFT
Image
the frequency spectrum of the color channel
"""
match default:
case Grayscale() | Matrix():
input = default.m
fourier = fft.rfft2(input) if real_signal else fft.fft2(input)
if isinstance(default, Matrix):
fourier = fourier.real
return Matrix(m=fourier)
case DataFrame():
input: pd.DataFrame = pd.DataFrame(default.m)
fourier = fft.rfft2(input) if real_signal else fft.fft2(input)
fourier = fourier.real
result = pd.DataFrame(columns=fourier.columns, index=fourier.index)
return DataFrame(m=result)
case Image():
red = default.r
green = default.g
blue = default.b
alpha = default.a
if color == "grayscale":
if alpha is None:
rgba_image = np.stack((red, green, blue), axis=2)
else:
rgba_image = np.stack((red, green, blue, alpha), axis=2)
try:
image = PillowImage.fromarray(rgba_image)
except TypeError:
image = PillowImage.fromarray((rgba_image * 255).astype(np.uint8))
image = image.convert("L")
grayscale = np.array(image)
fourier = fft.rfft2(grayscale) if real_signal else fft.fft2(grayscale)
else:
fourier = (
fft.rfft2(locals()[color], axes=[0, 1])
if real_signal
else fft.fft2(locals()[color], axes=[0, 1])
)
fourier = np.log10(np.abs(fourier))
fourier = extrapolate(fourier)
return Image(r=fourier, g=fourier, b=fourier, a=None)
Example
Having problems with this example app? Join our Discord community and we will help you out!
In this example, the SKIMAGE
node provides an astronaut image in RGB scale.
The image is then passed down to the TWO_DIMENSIONAL_FFT
node where discrete fourier transform is applied across all pixels in the image.
Note that since the image is in RGB, the DFT can only be applied to one color channel or the grayscale version of the original image.
In this example, DFT is applied to the red channel.