LOCAL_FILE
Load a local file from disk, infer the type, and convert it to a DataContainer class.Params:file_path : FileThe path to the file to be loaded. This can be either an absolute path or
a path relative to the "nodes" directory.default : Optional[TextBlob]If this input node is connected, the file name will be taken from
the output of the connected node.
To be used in conjunction with batch processing.file_type : strType of file to load, default = image.
If both 'file_path' and 'default' are not specified when 'file_type="Image"',
a default image will be loaded.
If the file path is not specified and the default input is not connected,
a ValueError is raised.Returns:out : Image | DataFrameImage for file_type 'image'.
Grayscale from file_type 'Grayscale'.
DataFrame for file_type 'json', 'csv'.
Python Code
from flojoy import flojoy, Image, DataFrame, Grayscale, TextBlob, File
from typing import Literal, Optional
import numpy as np
from PIL import Image as PIL_Image
import os
import pandas as pd
def get_file_path(file_path: str, default_path: str | None = None):
f_path = file_path if file_path != "" else default_path
if not f_path:
raise ValueError(
"The file path of the input file is missing. "
"Please provide a input TextBlob or a provide `file_path` with a value!"
)
if not os.path.isabs(f_path):
path_to_nodes = __file__[: __file__.rfind("nodes") + 5]
return os.path.abspath(os.path.join(path_to_nodes, f_path))
return f_path
@flojoy(
deps={
"scikit-image": "0.21.0",
}
)
def LOCAL_FILE(
file_path: File | None = None,
default: Optional[TextBlob] = None,
file_type: Literal["Image", "Grayscale", "JSON", "CSV"] = "Image",
) -> Image | DataFrame | Grayscale:
"""Load a local file from disk, infer the type, and convert it to a DataContainer class.
Parameters
----------
file_path : File
The path to the file to be loaded. This can be either an absolute path or
a path relative to the "nodes" directory.
default : Optional[TextBlob]
If this input node is connected, the file name will be taken from
the output of the connected node.
To be used in conjunction with batch processing.
file_type : str
Type of file to load, default = image.
If both 'file_path' and 'default' are not specified when 'file_type="Image"',
a default image will be loaded.
If the file path is not specified and the default input is not connected,
a ValueError is raised.
Returns
-------
Image | DataFrame
Image for file_type 'image'.
Grayscale from file_type 'Grayscale'.
DataFrame for file_type 'json', 'csv'.
"""
file_path = file_path.unwrap() if file_path else None
default_image_path = os.path.join(
os.path.dirname(os.path.abspath(__file__)),
"assets",
"astronaut.png",
)
file_path = default.text_blob if default else file_path
file_path = "" if file_path is None else file_path
match file_type:
case "Image":
file_path = get_file_path(file_path, default_image_path)
f = PIL_Image.open(file_path)
img_array = np.array(f.convert("RGBA"))
red_channel = img_array[:, :, 0]
green_channel = img_array[:, :, 1]
blue_channel = img_array[:, :, 2]
if img_array.shape[2] == 4:
alpha_channel = img_array[:, :, 3]
else:
alpha_channel = None
return Image(
r=red_channel,
g=green_channel,
b=blue_channel,
a=alpha_channel,
)
case "Grayscale":
import skimage.io
file_path = get_file_path(file_path, default_image_path)
return Grayscale(img=skimage.io.imread(file_path, as_gray=True))
case "CSV":
file_path = get_file_path(file_path)
df = pd.read_csv(file_path)
return DataFrame(df=df)
case "JSON":
file_path = get_file_path(file_path)
df = pd.read_json(file_path)
return DataFrame(df=df)
# TODO: we might add support for following file types later
# case "XML":
# file_path = get_file_path(file_path)
# df = pd.read_xml(file_path)
# return DataFrame(df=df)
# case "Excel":
# file_path = get_file_path(file_path)
# df = pd.read_excel(file_path)
# return DataFrame(df=df)
Example
Having problems with this example app? Join our Discord community and we will help you out!
In this example LOCAL_FILE
node is loading a default astronaut image which is then visualized with a plotly visualizer node IMAGE
.