INTEGRATE
Integrate over an OrderedPair or Vector using the composite trapezoidal rule.Params:default : OrderedPair|VectorInput from which we get the two lists we use in the integration.Returns:out : OrderedPairx: the x-axis of the input.
y: the result of the integral.
Python Code
from flojoy import flojoy, OrderedPair, Vector
import numpy as np
def trapz(x: np.ndarray, y: np.ndarray):
m = [0] * len(x)
trapezium = (1 / 2) * (x[1] - x[0]) * (y[1] + y[0])
m[1] = trapezium
for i in range(2, len(x)):
trapezium = (1 / 2) * (x[i] - x[i - 1]) * (y[i] + y[i - 1])
m[i] = m[i - 1] + trapezium
return m
@flojoy
def INTEGRATE(default: OrderedPair | Vector) -> OrderedPair:
"""Integrate over an OrderedPair or Vector using the composite trapezoidal rule.
Parameters
----------
default : OrderedPair|Vector
Input from which we get the two lists we use in the integration.
Returns
-------
OrderedPair
x: the x-axis of the input.
y: the result of the integral.
"""
match default:
case OrderedPair():
input_x = default.x
input_y = default.y
case Vector():
input_x = np.arange(len(default.v))
input_y = default.v
if type(input_x) != np.ndarray:
raise ValueError(f"Invalid type for x:{type(input_x)}")
elif type(input_y) != np.ndarray:
raise ValueError(f"Invalid type for y:{type(input_y)}")
elif len(input_x) != len(input_y):
raise ValueError(
f"X and Y keys must have the same length got, x:{len(input_x)} y:{len(input_y)}"
)
integrate = trapz(input_x, input_y)
return OrderedPair(x=input_x, y=integrate)
Example
Having problems with this example app? Join our Discord community and we will help you out!
In this example, the LINSPACE
node generate two lists (the OrderedPair
composed of x and y) that are required for the INTEGRATE
node.
Then INTEGRATE
node computes its integration using trapezoidal rule on the given input lists.
With the two LINE
nodes we can see that the original LINSPACE
function is a diagonal of the form which is constantly increasing. Then the LINE
node representing the integrate result is showing us an increasing curve as expected since the integral of is .