Skip to content

ARGRELMIN

The ARGRELMIN node is based on a numpy or scipy function.The description of that function is as follows: Calculate the relative minima of 'data'.Params:data : ndarrayArray in which to find the relative minima.axis : intAxis over which to select from 'data'. Default is 0.order : intHow many points on each side to use for the comparison to consider "comparator(n, n+x)" to be True.mode : strHow the edges of the vector are treated. Available options are 'wrap' (wrap around) or 'clip' (treat overflow as the same as the last (or first) element). Default 'clip'. See numpy.take.Returns:out : DataContainertype 'ordered pair', 'scalar', or 'matrix'
Python Code
from flojoy import OrderedPair, flojoy, Matrix, Scalar

import scipy.signal


@flojoy
def ARGRELMIN(
    default: OrderedPair | Matrix,
    axis: int = 0,
    order: int = 1,
    mode: str = "clip",
) -> OrderedPair | Matrix | Scalar:
    """The ARGRELMIN node is based on a numpy or scipy function.

    The description of that function is as follows:

        Calculate the relative minima of 'data'.

    Parameters
    ----------
    data : ndarray
        Array in which to find the relative minima.
    axis : int, optional
        Axis over which to select from 'data'. Default is 0.
    order : int, optional
        How many points on each side to use for the comparison
        to consider "comparator(n, n+x)" to be True.
    mode : str, optional
        How the edges of the vector are treated.
        Available options are 'wrap' (wrap around) or 'clip' (treat overflow
        as the same as the last (or first) element).
        Default 'clip'. See numpy.take.

    Returns
    -------
    DataContainer
        type 'ordered pair', 'scalar', or 'matrix'
    """

    result = OrderedPair(
        x=default.x,
        y=scipy.signal.argrelmin(
            data=default.y,
            axis=axis,
            order=order,
            mode=mode,
        ),
    )

    return result

Find this Flojoy Block on GitHub